题目内容
【题目】如图,在⊙O中,DE是⊙O的直径,AB是⊙O的弦,AB的中点C在直径DE上.已知AB=8cm,CD=2cm
(1)求⊙O的面积;
(2)连接AE,过圆心O向AE作垂线,垂足为F,求OF的长.
【答案】(1)S=25π;(2)OF=.
【解析】
(1)连接OA,根据AB=8cm,CD=2cm,C为AB的中点,设半径为r,由勾股定理列式即可求出r,进而求出面积.
(2)在Rt△ACE中,已知AC、EC的长度,可求得AE的长,根据垂径定理可知:OF⊥AE,FE=FA,利用勾股定理求出OF的长.
解:(1)连接OA,如图1所示
∵C为AB的中点,AB=8cm,
∴AC=4cm
又∵CD=2cm
设⊙O的半径为r,则(r-2)2+42=r2
解得:r=5
∴S=πr2=π×25=25π
(2)OC=OD-CD=5-2=3
EC=EO+OC=5+3=8
∴EA===4
∴EF===2
∴OF===
练习册系列答案
相关题目