题目内容
如图,点A、B、C在圆O上,∠ABO=32°,∠ACO=38°,则∠BOC等于 ()

A.60° B.70° C.120° D.140°

A.60° B.70° C.120° D.140°
D.
试题分析:过A、O作⊙O的直径AD,分别在等腰△OAB、等腰△OAC中,根据三角形外角的性质求出答案.
过A作⊙O的直径,交⊙O于D;
△OAB中,OA=OB,
则∠BOD=∠OBA+∠OAB=2×32°=64°,
同理可得:∠COD=∠OCA+∠OAC=2×38°=76°,
故∠BOC=∠BOD+∠COD=140°.
故选D
考点: 圆周角定理.

练习册系列答案
相关题目