题目内容
【题目】如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y= x上一点,则点B与其对应点B′间的距离为 .
【答案】5
【解析】解:如图,连接AA′、BB′.
∵点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,
∴点A′的纵坐标是4.
又∵点A的对应点在直线y= x上一点,
∴4= x,解得x=5.
∴点A′的坐标是(5,4),
∴AA′=5.
∴根据平移的性质知BB′=AA′=5.
故答案为:5.
根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.
练习册系列答案
相关题目
【题目】甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行了有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会. 在一个纸盒里装有2个红求和2个白球,除颜色外其他都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表)
甲 超 市
球 | 两红 | 一红一白 | 两白 |
礼金券 | 5 | 10 | 5 |
乙 超 市
球 | 两红 | 一红一白 | 两白 |
礼金券 | 10 | 5 | 10 |
(1)用树状图或列表法表示得到一次摸奖机会时中礼金券的所有情况;
(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.