题目内容

【题目】如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.
(1)求证:DB=DE;
(2)若AB=12,BD=5,求⊙O的半径.

【答案】
(1)证明:∵AO=OB,

∴∠OAB=∠OBA,

∵BD是切线,

∴OB⊥BD,

∴∠OBD=90°,

∴∠OBE+∠EBD=90°,

∵EC⊥OA,

∴∠CAE+∠CEA=90°,

∵∠CEA=∠DEB,

∴∠EBD=∠BED,

∴DB=DE


(2)作DF⊥AB于F,连接OE.

∵DB=DE,AE=EB=6,

∴EF= BE=3,OE⊥AB,

在Rt△EDF中,DE=BD=5,EF=3,

∴DF= =4,

∵∠AOE+∠A=90°,∠DEF+∠A=90°,

∴∠AOE=∠DEF,

∴sin∠DEF=sin∠AOE= =

∵AE=6,

∴AO=

∴⊙O的半径为


【解析】(1)欲证明DB=DE,只要证明∠DEB=∠DBE;(2)作DF⊥AB于F,连接OE.只要证明∠AOE=∠DEF,可得sin∠DEF=sin∠AOE= = ,由此求出AE即可解决问题.
【考点精析】认真审题,首先需要了解勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2),还要掌握垂径定理(垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网