题目内容
【题目】阅读下列材料并解决有关问题:
我们知道,|m|= .现在我们可以用这一结论来化简含有绝对值的代
数式,如化简代数式|m+1|+|m﹣2|时,可令 m+1=0 和 m﹣2=0,分别求得 m=﹣1,m=2(称﹣1,2 分别为|m+1|与|m﹣2|的零点值).在实数范围内, 零点值 m=﹣1 和 m=2 可将全体实数分成不重复且不遗漏的如下 3 种情况:
(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2| 可分以下 3 种情况:
(1)当 m<﹣1 时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;
(2)当﹣1≤m<2 时,原式=m+1﹣(m﹣2)=3;
(3)当 m≥2 时,原式=m+1+m﹣2=2m﹣1.
综上讨论,原式=
通过以上阅读,请你解决以下问题:
(1)分别求出|x﹣5|和|x﹣4|的零点值;
(2)化简代数式|x﹣5|+|x﹣4|;
(3)求代数式|x﹣5|+|x﹣4|的最小值.
【答案】(1)5 和 4;(2)原式=;(3)1.
【解析】
试题(1)令 x﹣5=0,x﹣4=0,解得 x 的值即可;(2)分为 x<4、4≤x<5、x≥5 三种情况化简即可;(3)根据(2)中的化简结果判断即可.
试题解析:
(1)令 x﹣5=0,x﹣4=0, 解得:x=5 和 x=4, 故|x﹣5|和|x﹣4|的零点值分别为 5 和 4;
(2)当 x<4 时,原式=5﹣x+4﹣x=9﹣2x; 当 4≤x<5 时,原式=5﹣x+x﹣4=1;
当 x≥5 时,原式=x﹣5+x﹣4=2x﹣9.
综上讨论,原式=.
(3)当 x<4 时,原式=9﹣2x>1; 当 4≤x<5 时,原式=1;
当 x≥5 时,原式=2x﹣9>1.
故代数式的最小值是 1.
练习册系列答案
相关题目