题目内容

【题目】在8×8的正方形网格中建立如图所示的平面直角坐标系,已知A(2,4),B(4,2).C是第一象限内的一个格点,由点C与线段AB组成一个以AB为底,且腰长为无理数的等腰三角形.C点的坐标是 , △ABC的面积为

【答案】(1,1);4
【解析】解:根据题意点C坐标为(1,1),SABC=3×3﹣ ×3×1﹣ ×3×1﹣ ×2×2=4. 所以答案是(1,1),4

【考点精析】关于本题考查的无理数和勾股定理的概念,需要了解在理解无理数时,要抓住“无限不循环”这个要点,归纳起来有四类:(1)开方开不尽的数;(2)有特定意义的数,如圆周率π,或化简后含有π的数;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能得出正确答案.

练习册系列答案
相关题目

【题目】阅读下面材料:点 AB 在数轴上分别表示两个数 abAB 两点间的距离记为|AB|,O 表示原点当 AB 两点中有一点在原点时,不妨设点 A 为原点, 如图 1,则|AB|=|OB|=|b|=|ab|;当 AB 两点都不在原点时,

①如图 2,若点 AB 都在原点的右边时,|AB|=|OB|﹣|OA|=|b|﹣|a|=ba=|ab|

②如图 3,若点 AB 都在原点的左边时,|AB|=|OB|﹣|OA|=|b|﹣|a|=|﹣b﹣(﹣a)=|ab|;

③如图 4,若点 AB 在原点的两边时,|AB|=|OB|+|OA|=|b|+|a|=﹣b+a=|ab|. 回答下列问题:综上所述,数轴上 AB 两点间的距离为|AB|=|ab|

(1)若数轴上的点 A 表示的数为﹣1,点 B 表示的数为 9, AB 两点间的距离为

(2)若数轴上的点 A 表示的数为﹣1,动点 P 从点 A 出发沿数轴正方向运动, P 的速度是每秒 4 个单位长度,t 秒后点 P 表示的数可表示为

(3)若点 A 表示的数﹣1,点 B 表示的数 9,动点 PQ 分别同时从 AB 出发沿数轴正方向运动,点 P 的速度是每秒 4 个单位长度,点 Q 的速度是每秒 2 个单位长度,求:运动几秒时,点 P 可以追上点 Q?(请写出必要的求解过程)

(4)若点 A 表示的数﹣1,点 B 表示的数 9,动点 PQ 分别同时从 AB 出发沿数轴正方向运动,点 P 的速度是每秒 4 个单位长度,点 Q 的速度是每秒 2 个单位长度,求运动几秒时,PQ 两点相距 5 个单位长度?请写出必要的求解过程)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网