题目内容

【题目】如图,在平面直角坐标系中,等腰三角形ABO的底边OA在x轴上,顶点B在反比例函数y= (x>0)的图象上,当底边OA上的点A在x轴的正半轴上自左向右移动时,顶点B也随之在反比例函数y= (x>0)的图象上滑动,但点O始终位于原点.

(1)如图①,若点A的坐标为(6,0),求点B的坐标;
(2)当点A移动到什么位置时,三角形ABO变成等腰直角三角形,请说明理由;
(3)在(2)中,如图②,△PA1A是等腰直角三角形,点P在反比例函数y= (x>0)的图象上,斜边A1A在x轴上,求点A1的坐标.

【答案】
(1)

解:如图①,过点B作BC⊥x轴于点C,

∵OB=AB,

∴OC=AC,点A移动到什么位置时,三角形ABO变成等腰直角三角形,

∵点A的坐标为(6,0),

∴OC= OA=3,

∵顶点B在反比例函数y= (x>0)的图象上,

∴y= =4,

∴点B的坐标为:(3,4)


(2)

解:点A移动到(4 ,0)时,△ABO变成等腰直角三角形.

理由:如图②,过点B作BC⊥x轴于点C,

∵△AOB是等腰直角三角形,

∴BC=OC= OA,

设点B(a,a),

∵顶点B在反比例函数y= (x>0)的图象上,

∴a=

解得:a=±2 (负值舍去),

∴OC=2

∴OA=2OC=4

∴点A移动到(4 ,0)时,△ABO变成等腰直角三角形


(3)

解:如图②,过点P作PD⊥x轴于点D,

∵△PA1A是等腰直角三角形,

∴PD=AD,

设AD=b,则点P(4 +b,b),

∵点P在反比例函数y= (x>0)的图象上,

∴b=

解得:b1=2 ﹣2 ,b2=﹣2 ﹣2 (舍去),

∴AA1=2b=4 ﹣4

∴OA1=OA+AA1=4

∴点A1的坐标为:(4 ,0).


【解析】(1)首先过点B作BC⊥x轴于点C,由等腰三角形的三线合一,可得OC=AC=3,然后由顶点B在反比例函数y= (x>0)的图象上,求得点B的坐标;(2)首先由等腰直角三角形的性质,可得OC=BC,然后由顶点B在反比例函数y= (x>0)的图象上,求得点B的坐标,继而求得点A的坐标;(3)首先过点P作PD⊥x轴于点D,易得AD=PD,则可设AD=b,则点P(4 +b,b),又由点P在反比例函数y= (x>0)的图象上,求得b的值,继而求得答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网