题目内容
【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣
,y1),(
,y2)是抛物线上的两点,则y1>y2,其中说法正确的序号是_____
【答案】①②
【解析】
①根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号;
②根据对称轴求出b=-a;
③把x=2代入函数关系式,结合图象判断函数值与0的大小关系;
④求出点(-,y1)关于对称轴x=
的对称点的坐标,根据二次函数的增减性即可判断y1和y2的大小.
如图,
①∵二次函数的图象开口向下,
∴a<0,
∵二次函数的图象交y轴的正半轴于一点,
∴c>0,
∵对称轴是直线x=-=
,
∴b=-a>0,
∴abc<0.
故①正确;
②∵由①中知b=-a,
∴a+b=0,
故②正确;
③把x=2代入y=ax2+bx+c得:y=4a+2b+c,
∵抛物线经过点(2,0),
∴当x=2时,y=0,即4a+2b+c=0.
故③错误;
④∵(-,y1)关于对称轴x=
的对称点的坐标是(
,y1),
又∵当x>时,y随x的增大而减小,
<
,
∴y1<y2.
故④错误;
综上所述,正确的结论是①②.
故答案为:①②.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】如图所示的是一个宽5米的餐厅,只能放8张餐桌.现计划扩建增加座位,只能对原宽度进行加长,设加长后的长度为m米.若餐厅的餐桌数为y,经计算,得到如下数据:(注:m和y都为正整数)
m(米) | 5 | 8 | 11 | 14 | …… |
餐桌数y(张) | 8 | 12 | 16 | …… |
(1)根据表中数据的规律,完成以上表格;
(2)求出y关于m的函数解析式;
(3)若这家餐厅至少要有80张餐桌,求m的最小值.