题目内容
【题目】如图,抛物线 (a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2; ②3a+c>0;③方程 的两个根是x1=﹣1,x2=3;④当y>0时,x的取值范围是﹣1<x<3⑤当x>0时,y随x的增大而减小.其中结论正确的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
【答案】B
【解析】分析:①根据抛物线与x轴的交点个数判断;②由对称轴方程得到a与b的关系,再根据x=-1时的函数值变形;③抛物线与x轴的两个交点关于抛物线的对称轴对称;④根据函数值大于0确定自变量的取值范围;⑤二次函数的增减性在对称轴的左侧与右侧不相同.
详解:①因为抛物线与x轴有两个交点,所以b2-4ac>0,即4ac<b2,则①正确;
②因为对称轴为x=1,所以,则b=-2a,当x=-1时,a-b+c=0,所以a+2a+c=0,则3a+c=0,则②错误;
③因为x1+x2=2,x1=-1,所以x2=3,则③正确;
④抛物线与x轴的两个交点的坐标是(-1,0),(3,0),开口向下,所以当y>0时,x的取值范围是﹣1<x<3,则④正确;
⑤因为抛物线开口向下,所以当x>1时,y随x的增大而减小,则⑤错误.
故选B.
练习册系列答案
相关题目