题目内容
【题目】阅读下面材料:小明遇到这样一个问题:
如图一,△ABC中,∠A=90°,AB=AC,BD平分∠ABC,猜想线段AD与DC数量关系.小明发现可以用下面方法解决问题:作DE⊥BC交BC于点E:
(1)根据阅读材料可得AD与DC的数量关系为__________.
(2)如图二,△ABC中,∠A=120°,AB=AC,BD平分∠ABC,猜想线段AD与DC的数量关系,并证明你的猜想.
(3)如图三,△ABC中,∠A=100°,AB=AC,BD平分∠ABC,猜想线段AD与BD、BC的数量关系,并证明你的猜想.
【答案】(1)CD=AD;(2)CD=AD;(3)BC=AD+BD.
【解析】
(1)由角平分线的性质可得AD=DE,根据∠A=90°,AB=AC,可得∠C=45°,由DE⊥BC可得△DEC是等腰直角三角形,可得CD=DE,进而可得答案;(2)在BC上截取BE=AB,连接DE,利用SAS可证明△ABD≌△EBD,可得AD=DE,∠BED=∠A=120°,由等腰三角形的性质可得∠C=30°,利用三角形外角性质可得∠CDE=90°,利用含30°角的直角三角形的性质即可得答案;(3)在BC上取一点E,使BE=BD,作DF⊥BA于F,DG⊥BC于G,由角平分线的性质就可以得出DF=DG,利用AAS可证明△DAF≌△DEG,可得 DA=DE,利用外角性质可求出∠EDC=40°,进而可得DE=CE,即可得出结论.
(1)∵∠A=90°,BD平分∠ABC,DE⊥BC,
∴DE=AD,
∵∠A=90°,AB=AC,
∴∠C=45°,
∴△CDE是等腰直角三角形,
∴CD=DE=AD,
故答案为:CD=AD
(2)如图,在BC上截取BE=AB,连接DE,
∵BD平分∠ABC,
∴∠ABD=∠DBE,
在△ABD和△EBD中,,
∴△ABD≌△EBD,
∴DE=AD,∠BED=∠A=120°,
∵AB=AC,
∴∠C=∠ABC=30°,
∴∠CDE=∠BED-∠C=90°,
∴CD=DE=AD.
(3)如图,在BC上取一点E,是BE=BD,作DF⊥BA于F,DG⊥BC于G,
∴∠DFA=∠DGE=90°.
∵BD平分∠ABC,DF⊥BA,DG⊥BC,
∴DF=DG.
∵∠BAC=100°,AB=AC,
∴∠FAD=80°,∠ABC=∠C=40°,
∴∠DBC=20°,
∵BE=BD,
∴∠BED=∠BDE=80°,
∴∠FAD=∠BED.
在△DAF和△DEG中,,
∴△DAF≌△DEG(AAS),
∴AD=ED.
∵∠BED=∠C+∠EDC,
∴80°=40+∠EDC,
∴∠EDC=40°,
∴∠EDC=∠C,
∴DE=CE,
∴AD=CE.
∵BC=BE+CE,
∴BC=BD+AD.
【题目】某校为了做好大课间活动,计划用400元购买10件体育用品,备选体育用品及单价如下表(单位:元)
备选体育用品 | 篮球 | 排球 | 羽毛球拍 |
单价(元) | 50 | 40 | 25 |
(1)若400元全部用来购买篮球和羽毛球拍共10件,问篮球和羽毛球拍各购买多少件?
(2)若400元全部用来购买篮球、排球和羽毛球拍三种共10件,能实现吗?(若能实现直接写出一种答案即可,若不能请说明理由.)