题目内容
【题目】如图,△ABC内接于⊙O,AB为直径,作OD⊥AB交AC于点D,延长BC,OD交于点F,过点C作⊙O的切线CE,交OF于点E.
(1)求证:EC=ED;
(2)如果OA=4,EF=3,求弦AC的长.
【答案】(1)见解析;(2)
【解析】
(1)连接OC,由切线的性质可证得∠ACE+∠A=90°,又∠CDE+∠A=90°,可得∠CDE=∠ACE,则结论得证;
(2)先根据勾股定理求出OE,OD,AD的长,证明Rt△AOD∽Rt△ACB,得出比例线段即可求出AC的长.
(1)证明:连接OC,
∵CE与⊙O相切,OC是⊙O的半径,
∴OC⊥CE,
∴∠OCA+∠ACE=90°,
∵OA=OC,
∴∠A=∠OCA,
∴∠ACE+∠A=90°,
∵OD⊥AB,
∴∠ODA+∠A=90°,
∵∠ODA=∠CDE,
∴∠CDE+∠A=90°,
∴∠CDE=∠ACE,
∴EC=ED;
(2)∵AB为⊙O的直径,
∴∠ACB=90°,
在Rt△DCF中,∠DCE+∠ECF=90°,∠DCE=∠CDE,
∴∠CDE+∠ECF=90°,
∵∠CDE+∠F=90°,
∴∠ECF=∠F,
∴EC=EF,
∵EF=3,
∴EC=DE=3,
∴OE=5,
∴OD=OE﹣DE=2,
在Rt△OAD中,AD=,
在Rt△AOD和Rt△ACB中,
∵∠A=∠A,∠ACB=∠AOD,
∴Rt△AOD∽Rt△ACB,
∴,即,
∴AC=.
练习册系列答案
相关题目