题目内容
如图所示,四边形ABCD的四个顶点在⊙O上,AC,BD是对角线,且AC⊥BD,OE⊥BC于E,探索:OE与AD的数量关系.
答:OE=
AD.
证明:连CO延长交⊙O于P,连接BP.
则∠CBP=90°;
∵OE⊥BC,由垂径定理,得BE=EC;
又∵BE=EC,PO=OC,
∴OE是△PBC的中位线,
∴OE=
BP;
∵∠1=∠2,∠PBD=90°-∠1,∠ADB=90°-∠2,
∴∠PBD=∠ADB,
=
;
∴
=
;
故BP=AD,即OE=
BP=
AD.
1 |
2 |
证明:连CO延长交⊙O于P,连接BP.
则∠CBP=90°;
∵OE⊥BC,由垂径定理,得BE=EC;
又∵BE=EC,PO=OC,
∴OE是△PBC的中位线,
∴OE=
1 |
2 |
∵∠1=∠2,∠PBD=90°-∠1,∠ADB=90°-∠2,
∴∠PBD=∠ADB,
PD |
AB |
∴
PB |
AD |
故BP=AD,即OE=
1 |
2 |
1 |
2 |
练习册系列答案
相关题目