题目内容
【题目】已知反比例函数y=的图象与一次函数y=ax+b的图象交于点A(1,4)和点B(m,﹣2),
(1)求这两个函数的关系式;
(2)观察图象,写出使得>ax+b成立的自变量x的取值范围;
(3)过点A作AC⊥x轴,垂足为C,在平面内有点D,使得以A,O,C,D四点为顶点的四边形为平行四边形,直接写出符合条件的所有D点的坐标.
【答案】(1)y=2x+2;(2)x<﹣2或0<x<1;(3)(0,﹣4),(0,4)或(2,4).
【解析】
(1)首先将A点坐标代入反比例函数,进而计算出k的值,再将B点代入反比例函数的关系式,求得参数m的值,再利用待定系数法求解一次函数的解析式.
(2)根据题意要使>ax+b则必须反比例函数的图象在一次函数之上,观察图象即可得到x的取值范围.
(3)首先写出A、C的坐标,再根据对角为OC、OA、AC进行分类讨论.
解:(1)将A(1,4)代入y=,得:4=k,
∴反比例函数的关系式为y=;
当y=﹣2时,﹣2=,解得:m=﹣2,
∴点B的坐标为(﹣2,﹣2).
将A(1,4),B(﹣2,﹣2)代入y=ax+b,得: ,
解得:,
∴一次函数的关系式为y=2x+2.
(2)观察函数图象,可知:当x<﹣2或0<x<1时,反比例函数图象在一次函数图象上方,
∴使得>ax+b成立的自变量x的取值范围为x<﹣2或0<x<1.
(3)∵点A的坐标为(1,4),
∴点C的坐标为(1,0).
设点D的坐标为(c,d),分三种情况考虑,如图所示:
①当OC为对角线时, ,
解得: ,
∴点D1的坐标为(0,﹣4);
②当OA为对角线时,
解得:
∴点D2的坐标为(0,4);
③当AC为对角线时, ,
解得: ,
∴点D3的坐标为(2,4).
综上所述:以A,O,C,D四点为顶点的四边形为平行四边形时,点D的坐标为(0,﹣4),(0,4)或(2,4).