题目内容
【题目】如图,矩形OABC的两边OA、OC在坐标轴上,且OC=2OA,M、N分别为OA、OC的中点,BM与AN交于点E,若四边形EMON的面积为2,则经过点B的双曲线的解析式为( )
A.y=﹣
B.y=﹣
C.y=﹣
D.y=﹣
【答案】A
【解析】解:过M作MG∥ON,交AN于G,过E作EF⊥AB于F,
设EF=h,OM=a,
由题意可知:AM=OM=a,ON=NC=2a,AB=OC=4a,BC=AO=2a
△AON中,MG∥ON,AM=OM,
∴MG= ON=a,
∵MG∥AB
∴ = ,
∴BE=4EM,
∵EF⊥AB,
∴EF∥AM,
∴ = .
∴FE= AM,即h= a,
∵S△ABM=4a×a÷2=2a2 ,
S△AON=2a×2a÷2=2a2 ,
∴S△ABM=S△AON ,
∴S△AEB=S四边形EMON=2,
S△AEB=AB×EF÷2=4a×h÷2=2,
ah=1,又有h= a,a= (长度为正数)
∴OA= ,OC=2 ,
因此B的坐标为(﹣2 , ),
经过B的双曲线的解析式就是y=﹣ .
过M作MG∥ON,交AN于G,过E作EF⊥AB于F,由题意可知:AM=OM=a,ON=NC=2a,AB=OC=4a,BC=AO=2a,再根据三角形相似以及三角形面积之间的关系求出B点坐标,即双曲线解析式求出.
练习册系列答案
相关题目