题目内容

【题目】如图,在ACB中,ACB=90゜,CDAB于D.

(1)求证:ACD=B;

(2)若AF平分CAB分别交CD、BC于E、F,求证:CEF=CFE.

【答案】(1)证明见解析;(2)证明见解析.

【解析】

试题分析:(1)由于∠ACD与∠B都是∠BCD的余角,根据同角的余角相等即可得证;

2)根据直角三角形两锐角互余得出∠CFA=90°-∠CAF,∠AED=90°-∠DAE,再根据角平分线的定义得出∠CAF=∠DAE,然后由对顶角相等的性质,等量代换即可证明∠CEF=∠CFE.

试题解析:(1)∵∠ACB=90゜,CD⊥AB于D,

∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,

∴∠ACD=∠B;

2)在Rt△AFC中,∠CFA=90°-∠CAF,

同理在Rt△AED中,∠AED=90°-∠DAE.

AF平分∠CAB,

∴∠CAF=∠DAE,

∴∠AED=∠CFE,

∵∠CEF=∠AED,

∴∠CEF=∠CFE.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网