题目内容
【题目】阅读材料,解答问题.
例:用图象法解一元二次不等式:x2﹣2x﹣3>0
解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.
又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.
∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.
观察函数图象可知:当x<﹣1或x>3时,y>0.
∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3.
(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3>0的解集是 ________;
(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0.
【答案】解:(1)x<﹣1或x>3;
(2)设y=x2﹣1,则y是x的二次函数,
∵a=1>0,
∴抛物线开口向上.
又∵当y=0时,x2﹣1=0,
解得x1=﹣1,x2=1.
∴由此得抛物线y=x2﹣1的大致图象如图所示.
观察函数图象可知:当x<﹣1或x>1时,y>0.
∴x2﹣1>0的解集是:x<﹣1或x>1.
【解析】
(1)由x2﹣2x﹣3=0得x1=﹣1,x2=3,抛物线y=x2﹣2x﹣3开口向上,y>0时,图象在x轴的上方,此时x<﹣1或x>3;
(2)仿照(1)的方法,画出函数y=x2﹣1的图象,找出图象与x轴的交点坐标,根据图象的开口方向及函数值的符号,确定x的范围.
练习册系列答案
相关题目