题目内容
【题目】如图,在正方形ABCD中,E是对角线BD上一点,DE=4BE,连接CE,过点E作EF⊥CE交AB的延长线于点F,若AF=8,则正方形ABCD的边长为_____.
【答案】5
【解析】
由∠EHC=∠BHF,∠CEH=∠FBH=90°可判定△ECH∽△BFH,从而得到∠ECH=∠BFH;作辅助线可证明四边形ENBM是正方形,根据正方形的性质得EM=EN,由角角边可证明△EMC≌△ENF,得CM=FN;因DE=4BE,△BEM∽△BDC,△BEN∽△BDA和线段的和差可求出正方形ABCD的边长.
解:如图所示:
过点E作EM⊥BC,EN⊥AB,分别交BC、AB于M、N两点,
且EF与BC相交于点H.
∵EF⊥CE,∠ABC=90°,∠ABC+∠HBF=180°,
∴∠CEH=∠FBH=90°,
又∵∠EHC=∠BHF,
∴△ECH∽△BFH(AA),
∴∠ECH=∠BFH,
∵EM⊥BC,EN⊥AB,四边形ABCD是正方形,
∴四边形ENBM是正方形,
∴EM=EN,∠EMC=∠ENF=90°,
在△EMC和△ENF中
,
∴△EMC≌△ENF(AAS)
∴CM=FN,
∵EM∥DC,∴△BEM∽△BDC,
∴.
又∵DE=4BE,
∴,
同理可得:,
设BN=a,则AB=5a,CM=AN=NF=4a,
∵AF=8,AF=AN+FN,
∴8a=8
解得:a=1,
∴AB=5
故答案为:5
练习册系列答案
相关题目