题目内容
【题目】在菱形ABCD中,∠BAD=,E为对角线AC上的一点(不与A,C重合),将射线EB绕点E顺时针旋转角之后,所得射线与直线AD交于F点.试探究线段EB与EF的数量关系.
小宇发现点E的位置,和的大小都不确定,于是他从特殊情况开始进行探究.
(1)如图1,当==90°时,菱形ABCD是正方形.小宇发现,在正方形中,AC平分∠BAD,作EM⊥AD于M,EN⊥AB于N.由角平分线的性质可知EM=EN,进而可得,并由全等三角形的性质得到EB与EF的数量关系为 .
(2)如图2,当=60°,=120°时,
①依题意补全图形;
②请帮小宇继续探究(1)的结论是否成立.若成立,请给出证明;若不成立,请举出反例说明;
(3)小宇在利用特殊图形得到了一些结论之后,在此基础上对一般的图形进行了探究,设∠ABE=,若旋转后所得的线段EF与EB的数量关系满足(1)中的结论,请直接写出角,,满足的关系: .
【答案】(1)EB=EF;(2)①补全图形见解析;②结论依然成立EB=EF.证明见解析; (3)°(当B的对称点不为D时)或°(当B的对称点为D时)
【解析】
(1)先证明ANEM是正方形,再证明,即可证得结果;
(2)①补全图形如图所示;
②证法1,用角平分线性质得出EM=EN,再证明出,即可;
证法2,利用菱形的性质直接出△ADE≌△ABE.即可得出结论;
(3)直接得出结论。
(1)EB=EF;
(2)①补全图形如图所示;
②结论依然成立EB=EF.
证法1:过点E作EM⊥AF于M,EN⊥AB于N.
∵四边形ABCD为菱形,
∴.
∵EM⊥AF,EN⊥AB.
∴°,EM=EN.
∵°,°,
∴°°.
∵°,
∴.
在△EFM与△EBN中,
∴△EFM ≌△EBN.
∴EF=EB.
证法2:连接ED
∵四边形ABCD是菱形,
∴AD=AB,∠DAC=∠BAE.
又∵AE=AE,
∴△ADE≌△ABE.
∴ED=EB,∠ADE=∠ABE.
又∵∠DAB=60°,∠BEF=120°.
∴∠F+∠ABE=180°.
又∵∠ADE+∠FDE=180°,
∴∠F=∠FDE.
∴EF=ED.
∴EF=EB.
(3)°(当B的对称点不为D时)或°(当B的对称点为D时).
【题目】在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分,某高校组织课外小组在我市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如下不完整统计表和统计图(如图).已知,两组户数频数宜方图的高度比为1:5.
月信息消费额分组统计表
组别 | 消费额/元 |
请结合图表中相关数据解答下列问题:
(1)这次接受调查的有_________户;
(2请你补全频数直方图;
(3)以各组组中值代表本组的月信息消费额的平均数,计算课外小组抽取家庭的月信息消费额的平均数;
(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?