题目内容
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2>4ac,②abc<0,③2a+b﹣c>0,④a+b+c<0.其中正确的是_____.
【答案】①④
【解析】
抛物线与x轴由两个交点,则b2﹣4ac>0,即b2>4ac,即可判断①;由二次函数图象可知,a<0,b<0,c>0,所以abc>0,即可判断②;对称轴:直线x=﹣1,b=2a,所以2a+b﹣c=4a﹣c,2a+b﹣c=4a﹣c<0,即可判断③;对称轴为直线x=﹣1,抛物线与x轴一个交点﹣3<x1<﹣2,则抛物线与x轴另一个交点0<x2<1,当x=1时,y=a+b+c<0,即可判断④.
解:①∵抛物线与x轴由两个交点,
∴b2﹣4ac>0,
即b2>4ac,
所以①正确;
②由二次函数图象可知,
a<0,b<0,c>0,
∴abc>0,
故②错误;
③∵对称轴:直线x=﹣=﹣1,
∴b=2a,
∴2a+b﹣c=4a﹣c,
∵a<0,4a<0,
c>0,﹣c<0,
∴2a+b﹣c=4a﹣c<0,
故③错误;
④∵对称轴为直线x=﹣1,抛物线与x轴一个交点﹣3<x1<﹣2,
∴抛物线与x轴另一个交点0<x2<1,
当x=1时,y=a+b+c<0,
故④正确.
故答案为①④.
【题目】若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数的图象与性质.列表:
x | … | 0 | 1 | 2 | 3 | … | |||||||||
y | … | 1 | 2 | 1 | 0 | 1 | 2 | … |
描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.
(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;
(2)研究函数并结合图象与表格,回答下列问题:
①点,,,在函数图象上, , ;(填“>”,“=”或“<”)
②当函数值时,求自变量x的值;
③在直线的右侧的函数图象上有两个不同的点,,且,求的值;
④若直线与函数图象有三个不同的交点,求a的取值范围.