题目内容
【题目】 如图,在矩形ABCD中,AB=6,BC=10,P是AD边上一动点(不含端点A,D),连接PC,E是AB边上一点,设BE=a,若存在唯一点P,使∠EPC=90°,则a的值是( )
A.B.C.3D.6
【答案】B
【解析】
设AP=x,AE=y,证明△APE∽△DCP,根据相似三角形的性质得到比例式,转化为一元二次方程,利用判别式△=0,构建方程解决问题.
解:∵PE⊥PC,
∴∠APE+∠DPC=90°,
∵∠D=90°,
∴∠DCP+∠DPC=90°,
∴∠APE=∠DCP,又∠A=∠D=90°,
∴△APE∽△DCP,
∴=,
设AP=x,AE=y,
可得x(10-x)=6y,
∴x2-10x+6y=0,
由题意△=0,
∴100-24y=0,
∴y=,
∵BE=AB-AE=6-=,
故选:B.
练习册系列答案
相关题目