题目内容
【题目】如图,四边形是矩形
(1)如图1,、分别是、上的点,,垂足为,连接.
①求证:;
②若为的中点,求证:;
(2)如图2,将矩形沿折叠,点落在点处,点落在边的点处,连接交于点,是的中点.若,,直接写出的最小值为 .
【答案】(1) ①见解析;②见解析;(2)
【解析】
(1)①证明△FBC∽△ECD可得结论.
②想办法证明∠AEB=∠AGB,可得sin∠AGB=sin∠AEB=.
(2)如图2中,取AB的中点T,连接PT,CP.因为四边形MNSR与四边形MNBA关于MN对称,T是AB中点,Q是SR中点,所以PT=PQ,MN垂直平分线段BS,推出BP=PS,由∠BCS=90°,推出PC=PS=PB,推出PQ+PS=PT+PC,当T,P,C共线时,PQ+PS的值最小.
(1)①证明:如图1中,
∵四边形ABCD是矩形,
∴∠CDE=∥BCF=90°,
∵BF⊥CE,
∴∠BGC=90°,
∴∠BCG+∠FBC=∠BCG+∠ECD=90°,
∴∠FBC=∠ECD,
∴△FBC∽△ECD,
∴.
②证明:如图1中,连接BE,GD.
∵BF⊥CE,EG=CG,
∴BF垂直平分线段EC,
∴BE=CB,∠EBG=∠CBG,
∵DG=CG,
∴∠CDG=∠GCD,
∵∠ADG+∠CDG=90°,∠BCG+∠ECD=90°,
∴∠ADG=∠BCG,
∵AD=BC,
∴△ADG≌△BCG(SAS),
∴∠DAG=∠CBG,
∴∠DAG=∠EBG,
∴∠AEB=∠AGB,
∴sin∠AGB=sin∠AEB=
(2)如图2中,取AB的中点T,连接PT,CP.
∵四边形MNSR与四边形MNBA关于MN对称,T是AB中点,Q是SR中点,
∴PT=PQ,MN垂直平分线段BS,
∴BP=PS,
∵∠BCS=90°,
∴PC=PS=PB,
∴PQ+PS=PT+PC,
当T,P,C共线时,PQ+PS的值最小,最小值=,
∴PQ+PS的最小值为.
【题目】二次函数为常数,中的与的部分对应值如下表:
x | -1 | 0 | 3 |
y | n | -3 | -3 |
当时,下列结论中一定正确的是________(填序号即可)
①;②当时,的值随值的增大而增大;③;④当时,关于的一元二次方程的解是,.
【题目】体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:
组别 | 个数段 | 频数 | 频率 |
1 | 5 | 0.1 | |
2 | 21 | 0.42 | |
3 | |||
4 |
(1)表中的数 , ;
(2)估算该九年级排球垫球测试结果小于10的人数;
(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.