题目内容
【题目】已知关于的一元二次方程:.
(1)求证:对于任意实数,方程都有实数根;
(2)当为何值时,方程的两个根互为相反数?请说明理由.
【答案】(1)见解析;(2)1,理由见解析.
【解析】
试题分析:(1)根据方程的系数结合根的判别式,可得出△=(t﹣3)2≥0,由此可证出:对于任意实数t,方程都有实数根;
(2)设方程的两根分别为m、n,由方程的两根为相反数结合根与系数的关系,即可得出m+n=t﹣1=0,解之即可得出结论.
试题解析:(1)证明:在方程x2﹣(t﹣1)x+t﹣2=0中,△=[﹣(t﹣1)]2﹣4×1×(t﹣2)=t2﹣6t+9=(t﹣3)2≥0,∴对于任意实数t,方程都有实数根;
(2)解:设方程的两根分别为m、n,
∵方程的两个根互为相反数,∴m+n=t﹣1=0,解得:t=1.
∴当t=1时,方程的两个根互为相反数.
练习册系列答案
相关题目