题目内容

【题目】如图,在⊙O中,AB是⊙O的直径,点D是⊙O上一点,点C是弧AD的中点,弦CEAB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=ABC;GP=GD;③点PACQ的外心;④APAD=CQCB.其中正确的是(  )

A. ①②③ B. ②③④ C. ①③④ D. ①②③④

【答案】B

【解析】

①错误,假设成立,推出矛盾即可;

②正确.想办法证明∠GPD=∠GDP即可;

③正确.想办法证明PC=PQ=PA即可;

④正确.证明△APF∽△ABD,可得APAD=AFAB,证明△ACF∽△ABC,可得AC2=AFAB,证明△CAQ∽△CBA,可得AC2=CQCB,由此即可解决问题;

解:①错误,假设∠BAD=∠ABC,则弧BD=AC,

AC=CD,

BD=AC=CD,显然不可能,故①错误.

②正确.连接OD.

∵GD是切线,

∴DG⊥OD,

∴∠GDP+∠ADO=90°,

∵OA=OD,

∴∠ADO=∠OAD,

∵∠APF+∠OAD=90°,∠GPD=∠APF,

∴∠GPD=∠GDP,

∴GD=GP,故②正确.

③正确.∵AB⊥CE,

AE=AC,

AC=CD,

CD=AE,

∴∠CAD=∠ACE,

∴PC=PA,

∵AB是直径,

∴∠ACQ=90°,

∴∠ACP+∠QCP=90°,∠CAP+∠CQP=90°,

∴∠PCQ=∠PQC,

∴PC=PQ=PA,

∵∠ACQ=90°,

∴点P是△ACQ的外心.故③正确.

正确.连接BD.

∵∠AFP=∠ADB=90°,∠PAF=∠BAD,

∴△APF∽△ABD,

=

∴APAD=AFAB,

∵∠CAF=∠BAC,∠AFC=∠ACB=90°,

∴△ACF∽△ABC,

可得AC2=AFAB,

∵∠ACQ=∠ACB,∠CAQ=∠ABC,

∴△CAQ∽△CBA,可得AC2=CQCB,

∴APAD=CQCB.故④正确,

故选:B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网