题目内容
【题目】如图,在平面直角坐标系中,已知抛物线y= x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)直线y=﹣x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.
①求n的值;
②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;
(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点 M关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为 .求点H到OM'的距离d的值.
【答案】
(1)
解:∵抛物线y= x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,
∴ ,解得 ,
∴该抛物线的解析式y= x2﹣ x﹣3;
(2)
解:①如图,过点E作EE'⊥x轴于E',则EE'∥OC,
∴ = ,
∵BE=4EC,
∴BE'=4OE',
设点E的坐标为(x,y),则OE'=x,BE'=4x,
∵B(2,0),
∴OB=2,即x+4x=2,
∴x= ,
∵抛物线y= x2﹣ x﹣3与y轴交于点C,
∴C(0,﹣3),
设直线BC的解析式为y=kx+b',
∵B(2,0),C(0,﹣3),
∴ ,解得 ,
∴直线BC的解析式为y= x﹣3,
当x= 时,y=﹣ ,
∴E( ,﹣ ),
把E的坐标代入直线y=﹣x+n,可得﹣ +n=﹣ ,
解得n=﹣2;
②△AGF与△CGD全等.理由如下:
∵直线EF的解析式为y=﹣x﹣2,
∴当y=0时,x=﹣2,
∴F(﹣2,0),OF=2,
∵A(﹣1,0),
∴OA=1,
∴AF=2﹣1=1,
由 解得 , ,
∵点D在第四象限,
∴点D的坐标为(1,﹣3),
∵点C的坐标为(0,﹣3),
∴CD∥x轴,CD=1,
∴∠AFG=∠CDG,∠FAG=∠DCG,
∴△AGF≌△CGD;
(3)
解:∵抛物线的对称轴为x=﹣ = ,直线y=m(m>0)与该抛物线的交点为M,N,
∴点M、N关于直线x= 对称,
设N(t,m),则M(1﹣t,m),
∵点 M关于y轴的对称点为点M',
∴M'(t﹣1,m),
∴点M'在直线y=m上,
∴M'N∥x轴,
∴M'N=t﹣(t﹣1)=1,
∵H(1,0),
∴OH=1=M'N,
∴四边形OM'NH是平行四边形,
设直线y=m与y轴交于点P,
∵四边形OM'NH的面积为 ,
∴OH×OP=1×m= ,即m= ,
∴OP= ,
当 x2﹣ x﹣3= 时,解得x1=﹣ ,x2= ,
∴点M的坐标为(﹣ , ),
∴M'( , ),即PM'= ,
∴Rt△OPM'中,OM'= = ,
∵四边形OM'NH的面积为 ,
∴OM'×d= ,
∴d= .
【解析】(1)根据抛物线y= x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,可得抛物线的解析式;(2)①过点E作EE'⊥x轴于E',则EE'∥OC,根据平行线分线段成比例定理,可得BE'=4OE',设点E的坐标为(x,y),则OE'=x,BE'=4x,根据OB=2,可得x= ,再根据直线BC的解析式为y= x﹣3,即可得到E( ,﹣ ),把E的坐标代入直线y=﹣x+n,可得n的值;②根据F(﹣2,0),A(﹣1,0),可得AF=1,再根据点D的坐标为(1,﹣3),点C的坐标为(0,﹣3),可得CD∥x轴,CD=1,再根据∠AFG=∠CDG,∠FAG=∠DCG,即可判定△AGF≌△CGD;(3)根据轴对称的性质得出OH=1=M'N,进而判定四边形OM'NH是平行四边形,再根据四边形OM'NH的面积为 ,求得OP= ,再根据点M的坐标为(﹣ , ),得到PM'= ,Rt△OPM'中,运用勾股定理可得OM'= ,最后根据OM'×d= ,即可得到d= .
【考点精析】根据题目的已知条件,利用二次函数的性质的相关知识可以得到问题的答案,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
【题目】为了更好改善河流的水质,治污公司决定购买10台污水处理设备现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.
A型 | B型 | |
价格万元台 | a | b |
处理污水量吨月 | 240 | 200 |
求a,b的值;
治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;
在的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.