题目内容

【题目】某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.
(1)求A、B两种钢笔每支各多少元?
(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?
(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?

【答案】
(1)解:设A种钢笔每只x元,B种钢笔每支y元,

由题意得

解得:

答:A种钢笔每只15元,B种钢笔每支20元;


(2)解:设购进A种钢笔z支,

由题意得:

∴42.4≤z<45,

∵z是整数

z=43,44,

∴90﹣z=47,或46;

∴共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,

方案二:购进A种钢笔44只,购进B种钢笔46只;


(3)解:W=(30﹣20+a)(68﹣4a)=﹣4a2+28a+680=﹣4(a﹣ 2+729,

∵﹣4<0,∴W有最大值,∵a为正整数,

∴当a=3,或a=4时,W最大,

∴W最大=﹣4×(3﹣ 2+729=728,30+a=33,或34;

答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元.


【解析】(1)设A种钢笔每只x元,B种钢笔每支y元,由题意得方程组即可解得答案;(2)设购进A种钢笔每只z元,由题意得 ,求得42.4≤z<45,由于z是整数,得到z=43,44于是得到共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,方案二:购进A种钢笔44只,购进B种钢笔46只,(3)根据二次函数的解析式W=(30﹣20+a)(68﹣4a)=﹣4a2+28a+680=﹣4(a﹣ 2+729即可求得结果.
【考点精析】通过灵活运用一元一次不等式组的应用,掌握1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网