题目内容
【题目】五一期间,乐乐与小佳两个人打算骑共享单车骑行出游,两人打开手机进行选择,已知附近共有3种品牌的4辆车,其中品牌有2辆,品牌和品牌各有1辆,手机上无法识别品牌,且有人选中车后其他人无法再选.
(1)若乐乐首先选择,求乐乐选中品牌单车的概率;
(2)请用画树状图或列表的方法求乐乐和小佳选中同一品牌单车的概率.
【答案】(1);(2).
【解析】
(1)直接用概率公式即可.
(2)先列出所有的可能结果,注意两个人不能选择同一辆车,再找出两个人选择同一品牌所占的结果数,最后用概率公式即可.
解:(1)若乐乐首先选择,则乐乐选中品牌单车的概率为;
(2)列表如下:(记品牌2辆车为:,)
— | ||||
— | ||||
— | ||||
— |
由表可知,共有12种等可能的结果,其中两人选中同一品牌单车有2种;
∴所求概率为.
【题目】如图,P是线段AB上的一点,AB=6cm,O是AB外一定点.连接OP,将OP绕点O顺时针旋转120°得OQ,连接PQ,AQ.小明根据学习函数的经验,对线段AP,PQ,AQ的长度之间的关系进行了探究.
下面是小明的探究过程,请补充完整:
(1)对于点P在AB上的不同位置,画图、测量,得到了线段AP,PQ,AQ的长度(单位:cm)的几组值,如表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | |
AP | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 |
PQ | 4.00 | 2.31 | 0.84 | 1.43 | 3.07 | 4.77 | 6.49 |
AQ | 4.00 | 3.08 | 2.23 | 1.57 | 1.40 | 1.85 | 2.63 |
在AP,PQ,AQ的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;/span>
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;
(3)结合函数图象,解决问题:当AQ=PQ时,线段AP的长度约为 cm.