题目内容
【题目】如图,⊙O内切于正方形ABCD,边AD、CD分别与⊙O切于点E、F,点M、N分别在线段DE、DF上,且MN与⊙O相切,若△MBN的面积为8,则⊙O的半径为( )
A.B.2C.D.2
【答案】B
【解析】
设⊙O与MN相切于点K,设正方形的边长为2a.因为AD、CD、MN是切线,可得AE=DE=DF=CF=a,MK=ME,NK=NF,设MK=ME=x,NK=NF=y,在Rt△DMN中,以为MN=x+y,DN=a-y,DM=a-x,看到(x+y)2=(a-y)2+(a-x)2,推出ax+ay+xy=a2,根据S△BMN=S正方形ABCD-S△ABM-S△DMN-S△BCN=8,构建方程求出a即可解决问题;
解:设⊙O与MN相切于点K,设正方形的边长为2a.
∵AD、CD、MN是切线,
∴AE=DE=DF=CF=a,MK=ME,NK=NF,设MK=ME=x,NK=NF=y,
在Rt△DMN中,∵MN=x+y,DN=a﹣y,DM=a﹣x,
∴(x+y)2=(a﹣y)2+(a﹣x)2,
∴ax+ay+xy=a2,
∵S△BMN=S正方形ABCD﹣S△ABM﹣S△DMN﹣S△BCN=8,
∴4a2﹣×2a×(a+x)﹣(a﹣x)(a﹣y)﹣×2a×(a+y)=8,
∴a2﹣(ax+ay+xy)=8,
∴a2=8,
∴a=2,
∴AB=2a=4,
∴⊙O的半径为2,
故选:B.
练习册系列答案
相关题目