题目内容

【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1,下列结论:①abc<0;②9a+3b+c=0;③4ac﹣b2<2a;④2b=3a.
其中正确的结论是( )

A.①③
B.②④
C.①④
D.②③

【答案】D
【解析】①∵抛物线开口向上,对称轴为直线x=1,与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),

∴a>0,﹣ =1,c<0,

∴b=﹣2a<0,

∴abc>0,结论①错误;②∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,

∴二次函数y=ax2+bx+c(a≠0)的图象与x轴的另一个交点为(3,0),

∴9a+3b+c=0,结论②正确;③∵二次函数y=ax2+bx+c(a≠0)的图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),

∴抛物线顶点纵坐标 <﹣1,

∵a>0,

∴4ac﹣b2<﹣4a<2a,结论③正确;④∵抛物线对称轴为直线x=1,

∴﹣ =1,b=﹣2a,结论④错误.

综上所述,正确的结论有:②③.

所以答案是:D.

【考点精析】本题主要考查了二次函数的性质和二次函数图象以及系数a、b、c的关系的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网