题目内容
【题目】如图,直线y=﹣2x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.
(1)求抛物线的解析式;
(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?
(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
【答案】(1)y=﹣2x2+x+3;(2)点E的坐标是(,)时,△BEC的面积最大,最大面积是;(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,点P的坐标是(﹣,﹣3)或(2,﹣3)或(﹣,2).
【解析】
(1)首先根据直线y=﹣2x+3与x轴交于点C,与y轴交于点B,求出点B的坐标是(0,3),点C的坐标是(4,0);然后根据抛物线y=ax2+x+c经过B、C两点,求出a、c的值是多少,即可求出抛物线的解析式.
(2)首先过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,然后设点E的坐标是(x,﹣2x2+x+3),则点M的坐标是(x,﹣2x+3),求出EM的值是多少;最后根据三角形的面积的求法,求出S△ABC,进而判断出当△BEC面积最大时,点E的坐标和△BEC面积的最大值各是多少即可.
(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.然后分三种情况讨论,根据平行四边形的特征,求出使得以P、Q、A、M为顶点的四边形是平行四边形的点P的坐标是多少即可.
(1)∵直线y=﹣2x+3与x轴交于点C,与y轴交于点B,
∴点B的坐标是(0,3),点C的坐标是(,0),
∵抛物线y=ax2+x+c经过B、C两点,
∴,
解得,
∴抛物线的解析式为:y=﹣2x2+x+3;
(2)如图1,过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,
∵点E是直线BC上方抛物线上的一动点,
∴设点E的坐标是(x,﹣2x2+x+3),
则点M的坐标是(x,﹣2x+3),
∴EM=﹣2x2+x+3﹣(﹣2x+3)=﹣2x2+3x,
∴S△BEC=S△BEM+S△MEC
=EMOC
=×(﹣2x2+3x)×
=﹣(x﹣)2+,
∴当x=时,即点E的坐标是(,)时,△BEC的面积最大,最大面积是;
(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,
①如图2,AM∥PQ,AM=PQ.
由(2),可得点M的横坐标是,
∵点M在直线y=﹣2x+3上,
∴点M的坐标是(,),
又∵抛物线y=﹣2x2+x+3的对称轴是x=,
∴设点P的坐标是(x,﹣2x2+x+3),
∵点A的坐标是(﹣1,0),
∴xP﹣xA=xQ﹣xM,x﹣(﹣1)=﹣,
解得x=﹣,
此时P(﹣,﹣3);
②如图3,由(2)知,可得点M的横坐标是,
∵点M在直线y=﹣2x+3上,
∴点M的坐标是(,),
又∵抛物线y=﹣2x2+x+3的对称轴是x=,
∴设点P的坐标是(x,﹣2x2+x+3),点Q的横坐标是,
∵点A的坐标是(﹣1,0),
∴xQ﹣xA=xP﹣xM,即﹣(﹣1)=x﹣,
解得x=2,
此时P(2,﹣3);
③如图4,由(2)知,可得点M的横坐标是,
∵点M在直线y=﹣2x+3上,
∴点M的坐标是(,),
又∵抛物线y=﹣2x2+x+3的对称轴是x=,
∴设点P的坐标是(x,﹣2x2+x+3),点Q的横坐标是,
∵点A的坐标是(﹣1,0),
∴xP﹣xA=xM﹣xQ,即x﹣(﹣1)=﹣,
解得x=﹣,
此时P(﹣,2);
综上所述,在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,点P的坐标是(﹣,﹣3)或(2,﹣3)或(﹣,2).