题目内容
如图,有一座抛物线形的拱桥,桥下的正常水位为OA,此时水面宽为40米,水面离桥的最大高度为16米,则拱桥所在的抛物线的解析式为______.


取水面离桥的最大高度的点C,过C作CD⊥AO于D,
则OD=AD=
OA=
×40=20(米),
∴点C的坐标为(20,16),点A的坐标为(40,0),
设拱桥所在的抛物线的解析式为:y=a(x-20)2+16,
将点A代入得:400a+16=0,
解得:a=-
,
∴拱桥所在的抛物线的解析式为:y=-
(x-20)2+16.
故答案为:y=-
(x-20)2+16.

则OD=AD=
1 |
2 |
1 |
2 |
∴点C的坐标为(20,16),点A的坐标为(40,0),
设拱桥所在的抛物线的解析式为:y=a(x-20)2+16,
将点A代入得:400a+16=0,
解得:a=-
1 |
25 |
∴拱桥所在的抛物线的解析式为:y=-
1 |
25 |
故答案为:y=-
1 |
25 |


练习册系列答案
相关题目