题目内容
【题目】如图,直线AB、CD相交于点O,∠BOE=90°,OM平分∠AOD,ON平分∠DOE.
(1)若∠EON=18°,求∠AOC的度数.
(2)试判断∠MON与∠AOE的数量关系,并说明理由.
【答案】(1)54°;(2)∠MON=∠AOE=45°.
【解析】
试题分析:(1)直接利用角平分线的性质得出∠DOE的度数,再求出∠DOB的度数,进而得出答案;
(2)直接利用未知数表示出∠AOD、∠MOD、∠MON进而求出答案.
解:(1)∵ON平分∠DOE,
∴∠DOE=2∠EON=36°,
∵∠BOE=∠DOE+∠DOB=90°,
∴∠DOB=∠BOE﹣∠DOE=54°,
∴∠AOC=∠DOB=54°;
(2)∠DON=∠AOE
理由:设∠DON=x°,
∵ON平分∠DOE,
∴∠DOE=2∠DON=2x°,
∵∠AOE+∠BOE=180°,∠BOE=90°,
∴∠AOE=180°﹣∠BOE=90°,
∴∠AOD=∠AOE+∠DOE=(90+2x)°,
∵OM平分∠AOD,
∴∠MOD=(90+2x)°=(45+x)°,
∴∠MON=∠MOD﹣∠DON=45°,
∴∠MON=∠AOE=45°.
练习册系列答案
相关题目