题目内容
【题目】某市少年宫为小学生开设了绘画、音乐、舞蹈和跆拳道四类兴趣班,为了解学生对这四类兴趣班的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制了一幅不完整的统计表
兴趣班 | 频数 | 频率 |
A | 0.35 | |
B | 18 | 0.30 |
C | 15 | |
D | 6 | |
合计 | 1 |
请你根据统计表中提供的信息回答下列问题:
(1)统计表中的 , ;
(2)根据调查结果,请你估计该市2000名小学生中最喜欢“绘画”兴趣的人数;
(3)王姝和李要选择参加兴趣班,若他们每人从、、、四类兴趣班中随机选取一类,请用画树状图或列表格的方法,求两人恰好选中同一类的概率.
【答案】(1),;(2)最喜欢绘画兴趣的人数为700人;(3)
【解析】
(1)根据频率=频数÷总数可得;
(2)总人数乘以A选项对应频率可得;
(3)根据题意列表,求出所有等可能的结果,再用两人恰好选中同一类的结果数除以总的结果数即可.
解:(1)a=18÷0.3=60,b=15÷60=0.25,
故答案为60 , 0.25;
(2)估计该市2000名小学生中最喜欢“绘画”兴趣班的人数2000×0.35=700(人);
(3)根据题意列表如下:
王姝 李要 | A | B | C | D |
A | AA | AB | AC | AD |
B | AB | BB | CB | DB |
C | AC | BC | CC | DC |
D | AD | BD | CD | DD |
共有16种等可能的结果,其中两人恰好选中同一类的结果有4种,
∴两人恰好选中同一类的概率为:.
【题目】2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.
对冬奥会了解程度的统计表
对冬奥会的了解程度 | 百分比 |
A非常了解 | 10% |
B比较了解 | 15% |
C基本了解 | 35% |
D不了解 | n% |
(1)n= ;
(2)扇形统计图中,D部分扇形所对应的圆心角是 ;
(3)请补全条形统计图;
(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.