题目内容

【题目】如图,在平面直角坐标系,抛物线的图象与轴交于两点,与轴交于点

       

       备用图

1)求抛物线的解析式.

2)点是直线上方的抛物线上一点,连接轴交于

①点轴上一动点,连接,当以为顶点的三角形与相似时,求出线段的长;

②点轴左侧抛物线上一点,过点作直线的垂线,垂足为,若,请直接写出点的坐标.

【答案】1;(2)①;②

【解析】

1)用待定系数法求解即可;

2)①将点E代入抛物线解析式,计算点E,得出ABAEBE长度,证得,然后分为两种情况进行讨论即可;

②根据题意信息,求得直线CE的解析式,通过角度转化,结合锐角三角函数,相似成比例,求得点H的坐标.

解:(1)将代入得,

解得:

抛物线的解析式为:

(2)①将代入中,

解得(舍去)

(I)当时,

点重合,

图1

(II)当时,

故:的长为

图2

②点的坐标为

(I)过点于点,过点于点

直线的解析式为

点的纵坐标为,代入中,得:(舍去)

,则

解得,

点的横坐标为,代入,得:

的坐标为

图3

(II)过点,过点于点,过点于点

由(I)知:,则

由(I)知:

,则

,又

,代中,得,(舍去)

点的横坐标为,代入,得,

的坐标为

图4

综合以上可得点的坐标为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网