题目内容

如图,已知,∠BAD=120°,AC平分∠BAD,若∠ABC+∠ADC=180°,则如下结论一定正确的有(  )个
①DC=BC;②AD+AB=AC;③S△ABC=3S△ACD;④∠ACB=3∠ACD.
A.4B.3C.2D.1


过C作CF⊥AB于F,CE⊥AM于E,
∵AC平分∠BAD,
∴CE=CF,∠CED=∠CFB=90°,
∵∠ABC+∠ADC=180°,∠ADC+∠EDC=180°,
∴∠CBF=∠EDC,
在△EDC和△FBC中,
∠CDE=∠CBF
∠CED=∠CFB
CE=CF

∴△EDC≌△FBC(AAS),
∴CD=CB,DE=FB,
∵CE=CF,AC=AC,
∴由勾股定理得:AE=AF,
∵∠BAD=120°,AC平分∠BAD,
∴∠CAF=60°,
∴∠ACF=30°,
∵∠AFC=90°,
∴AC=2AF=AE+AF,
∵AD+AB=AD+AF+FB=AD+AF+DE=AE+AF=2AF,
∴AD+AB=AC,∴①正确;②正确;
当∠ABC=∠ADC=90°时,S△ADC=S△ABC,∠ACB=∠ACD,∴③④错误;
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网