题目内容
【题目】我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等. 那么在什么情况下,它们会全等?
(1)阅读与证明:
对于这两个三角形均为直角三角形,显然它们全等.
对于这两个三角形均为钝角三角形,可证它们全等(证明略).
对于这两个三角形均为锐角三角形,它们也全等,可证明如下:
已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C1,∠C=∠C1.
求证:△ABC≌△A1B1C1. (请你将下列证明过程补充完整)
证明:分别过点B,B1作BD⊥CA于D,B1D1⊥C1A1于D1.
则∠BDC=∠B1D1C1=90°,
∵BC=B1C1,∠C=∠C1,
∴△BCD≌△B1C1D1,
∴BD=B1D1.
______________________________。
(2)归纳与叙述:
由(1)可得到一个正确结论,请你写出这个结论.
【答案】见解析
【解析】考查三角形全等的判定
本题考查的是全等三角形的判定,首先易证得△ADB≌△A1B1C1然后易证出△ABC≌△A1B1C1.
- 又∵AB=A1B1,∠ADB=∠A1D1B1=90°,
∴△ADB≌△A1D1B1,
∴∠A=∠A1,
又∵∠C=∠C1,BC=B1C1,
∴△ABC≌△A1B1C1
- 若△ABC、△A1B1C1均为锐角三角形或均为直角三角形或均为钝角三角形,
AB=A1B1,BC=B1C1,∠C=∠C1,
则△ABC≌△A1B1C1.
练习册系列答案
相关题目