题目内容
【题目】△ABC在边长为l的正方形网格中如图所示.
①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2.且△A1B1C位于点C的异侧,并表示出A1的坐标.
②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.
③在②的条件下求出点B经过的路径长.
【答案】①作图见解析,点A1的坐标为(3,﹣3);②作图见解析;③
【解析】
①延长AC到A1使A1C=2AC,延长BC到B1使B1C=2BC,则△A1B1C满足条件;
②利用网格特点和旋转的性质画出A、B的对应点A2、B2,从而得到△A2B2C.
③先计算出OB的长,然后根据弧长公式计算点B经过的路径长.
解:①如图,△A1B1C为所作,点A1的坐标为(3,﹣3);
②如图,△A2B2C为所作;
③,
点B经过的路径长.
【题目】小李的活鱼批发店以 44 元/公斤的价格从港口买进一批 2000 公斤的某品种活鱼,在运输过程中,有部分鱼未能存活,小李对运到的鱼进行随机抽查,结果如表一.由于 市场调节,该品种活鱼的售价与日销售量之间有一定的变化规律,表二是近一段时间该批发店的销售记录.
表一
所抽查的鱼的总重量 m(公斤) | 100 | 150 | 200 | 250 | 350 | 450 | 500 |
存活的鱼的重量与 m 的比值 | 0.885 | 0.876 | 0.874 | 0.878 | 0.871 | 0.880 | 0.880 |
表二
该品种活鱼的售价(元/公斤) | 50 | 51 | 52 | 53 | 54 |
该品神活鱼的日销售量(公斤) | 400 | 360 | 320 | 280 | 240 |
(1)请估计运到的 2000 公斤鱼中活鱼的总重量;(直接写出答案)
(2)按此市场调节的观律,
①若该品种活鱼的售价定为 52.5 元/公斤,请估计日销售量,并说明理由;
②考虑到该批发店的储存条,小李打算 8 天内卖完这批鱼(只卖活鱼),且售价保持 不变,求该批发店每日卖鱼可能达到的最大利润,并说明理由.