题目内容

【题目】ABC在边长为l的正方形网格中如图所示.

①以点C为位似中心,作出ABC的位似图形A1B1C,使其位似比为12.且A1B1C位于点C的异侧,并表示出A1的坐标.

②作出ABC绕点C顺时针旋转90°后的图形A2B2C

③在②的条件下求出点B经过的路径长.

【答案】①作图见解析,点A1的坐标为(3,﹣3);②作图见解析;③

【解析】

①延长AC到A1使A1C=2AC,延长BC到B1使B1C=2BC,则△A1B1C满足条件;

②利用网格特点和旋转的性质画出A、B的对应点A2、B2,从而得到△A2B2C.

③先计算出OB的长,然后根据弧长公式计算点B经过的路径长.

解:①如图,△A1B1C为所作,点A1的坐标为(3,﹣3);

②如图,△A2B2C为所作;

点B经过的路径长

练习册系列答案
相关题目

【题目】问题:在1nn ≥2)这n个自然数中,每次取两个数(不分顺序),使得所取两数之和大于n,共有多少种取法?

探究:不妨设有m种取法,为了探究mn的关系,我们先从简单情形入手,再逐次递进,最后猜想得出结论.

探究一:在122个自然数中,每次取两个不同的数(不分顺序),使得所取的两个数之和大于2,有多少种取法?

根据题意,有下列取法:1+2,共1种取法.

所以,当n=2时,m=1.

探究二:在133个自然数中,每次取两个不同的数(不分顺序),使得所取的两个数之和大于3,有多少种取法?

根据题意,有下列取法:1+32+3,共2种取法.

所以,当n=3时,m=2.

探究三:在144个自然数中,每次取两个不同的数(不分顺序),使得所取的两个数之和大于4,有多少种取法?

根据题意,有下列取法:1+42+43+42+3,共有3+1=4种取法.

所以,当n=4时,m=3+1=4.

探究四:在155个自然数中,每次取两个不同的数(不分顺序),使得所取的两个数之和大于5,有多少种取法?

根据题意,有下列取法:1+5 2+5 3+5 4+52+43+4,共有4+2=6种不同的取法.

所以,当n=5时,m=4+2=6.

探究五:在166个自然数中,每次取两个不同的数(不分顺序),使得所取的两个数之和大于6,有多少种不同的取法?(仿照上述探究方法,写出解答过程)

探究六:在177个自然数中,每次取两个不同的数,使得所取的两个数之和大于7,共有 种取法?(直接写出结果)

不妨继续探究n=8,9···时,mn的关系.

结论:在1nn个自然数中,每次取两个数,使得所取的两个数字之和大于n,当n为偶数时,共有___种取法;当n为奇数时,共有___种取法;(只填最简算式)

应用:(1)各边长都是自然数,最大边长为11的不等边三角形共有

2)各边长都是自然数,最大边长为12的三角形共有

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网