题目内容

【题目】如图,已知抛物线y=x2+bx+cx轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.

⑴求抛物线的函数表达式;

⑵求直线BC的函数表达式;

⑶点Ey轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.①当线段PQ=AB时,求tanCED的值;②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.

【答案】(1)y=x2-2x-3 (2) y=x-3 (3) P()(1-,-2),(1-

【解析】

已知了C点的坐标,即知道了OC的长,可在直角三角形BOC中根据∠BCO的正切值求出OB的长,即可得出B点的坐标.已知了△AOC△BOC的面积比,由于两三角形的高相等,因此面积比就是AOOB的比.由此可求出OA的长,也就求出了A点的坐标,然后根据ABC三点的坐标即可用待定系数法求出抛物线的解析式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网