题目内容
【题目】在学习一元一次方程的解法时,我们经常遇到这样的试题:
“解方程:”,请根据解题过程,在后面的括号内写出变形依据.
解:去分母,得 ( )
去括号,得 ( )
移项,得 ( )
合并,得 (合并同类项法则)
系数化为 1,得 ( )
请你写出在进行运算时容易出错的地方(至少写出三个).
【答案】答案见解析
【解析】
(1)方程去分母,去括号,移项合并,把x系数化为1,求出解;
(2)提出三条运算时容易出错的地方即可.
(1)去分母,得:15x﹣3(x﹣2)=5(2x﹣5)﹣45(等式的性质)
去括号,得:15x﹣3x+6=10x﹣25﹣45(去括号法则)
移项,得:15x﹣3x﹣10x=﹣25﹣45﹣6(等式的性质)
合并,得:2x=﹣76(合并同类项)
系数化为1,得:x=﹣38(等式的性质);
(2)去分母时各项都要乘以15;去括号时,括号外边是负号时注意变号;移项时注意要变号.
故答案为:(1)15x﹣3(x﹣2)=5(2x﹣5)﹣45;等式的性质;15x﹣3x+6=10x﹣25﹣45;去括号法则;15x﹣3x﹣10x=﹣25﹣45﹣6;等式的性质;2x=﹣76;x=﹣38;等式的性质.
【题目】菲尔兹奖是国际上有崇高声誉的一个数学奖项,下面的数据是从1936年至2014年菲尔兹奖得主获奖时的年龄(岁): 29 39 35 33 39 27 33 35 31 31 37 32 38 36
31 39 32 38 37 34 29 34 38 32 35 36 33 32
29 35 36 37 39 38 40 38 37 39 38 34 33 40
36 36 37 40 31 38 38 40 40 37 35 40 39 37
请根据上述数据,解答下列问题:
小彬按“组距为5”列出了如图的频数分布表
分组 | 频数 |
A:25~30 | |
B:30~35 | 15 |
C:35~40 | 31 |
D:40~45 | |
合计 | 56 |
(1)每组数据含最小值不含最大值,请将表中空缺的部分补充完整,并补全频数分布直方图;
(2)根据(1)中的频数分布直方图描述这56位菲尔兹奖得主获奖时的年龄的分布特征;
(3)在(1)的基础上,小彬又画了如图所示的扇形统计图,图中获奖年龄在30~35岁的人数约占获奖总人数的%(百分号前保留1位小数);C组所在扇形对应的圆心角度数约为°(保留整数)