题目内容
【题目】已知抛物线的对称轴是直线x=﹣1,与x轴一个交点是点A(﹣3,0),且经过点B(﹣2,6)
(1)求该抛物线的解析式;
(2)若点(﹣,y1)与点(2,y2)都在该抛物线上,直接写出y1与y2的大小关系.
【答案】(1)y=﹣2x2﹣4x+6;(2)y1>y2.
【解析】
(1)先利用对称性确定抛物线与x轴另一个交点坐标为(1,0),则可设交点式为y=a(x+3)(x﹣1),然后把B点坐标代入求出a即可;
(2)根据二次函数的性质,通过比较点(﹣,y1)和点(2,y2)到直线x=﹣1的距离大小确定y1与y2的大小关系.
解:(1)∵抛物线的对称轴是直线x=﹣1,与x轴一个交点是点A(﹣3,0),
∴抛物线与x轴另一个交点坐标为(1,0),
设抛物线解析式为y=a(x+3)(x﹣1),
把B(﹣2,6)代入得a×1×(﹣3)=6,解得a=﹣2,
∴抛物线解析式为y=﹣2(x+3)(x﹣1),即y=﹣2x2﹣4x+6;
(2)∵点(﹣,y1)到直线x=﹣1的距离比点(2,y2)到直线x=﹣1的距离要小,
而抛物线的开口向下,
∴y1>y2.
【题目】下表记录了一名球员在罚球线上投篮的结果,这么球员投篮一次,投中的概率约是( )
投篮次数 | 10 | 50 | 100 | 150 | 200 | 250 | 300 | 500 |
投中次数 | 4 | 35 | 60 | 78 | 104 | 123 | 152 | 251 |
投中频率 | 0.40 | 0.70 | 0.60 | 0.52 | 0.52 | 0.49 | 0.51 | 0.50 |
A. 0.7B. 0.6C. 0.5D. 0.4
【题目】在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
销售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售价x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?