题目内容
【题目】如图,已知AB=2,AD=4,∠DAB=90°,AD∥BC.E是射线BC上的动点(点E与点B不重合),M是线段DE的中点,连结BD,交线段AM于点N,如果以A,N,D为顶点的三角形与△BME相似,则线段BE的长为___________.
【答案】8或2
【解析】试题分析:因为如果三角形ADN和BME相似,一定不相等的角是∠ADN和∠MBE,因为AD∥BC,如果两角相等,那么M与D重合,显然不合题意,故应分两种情况进行讨论,设BE长为x.
①如图1,当∠ADN=∠BEM时,那么∠ADB=∠BEM,作DF⊥BE,垂足为F,tan∠ADB=tan∠BEM,AB:AD=DF:FE=AB:(BE﹣AD).即2:4=2:(x﹣4).解得x=8.即BE=8.
②如图2,当∠ADB=∠BME,而∠ADB=∠DBE,∴∠DBE=∠BME,∵∠E是公共角,
∴△BED∽△MEB,∴,BE2=DEEM=DE2=(DF2+EF2),
∴BE2=[22+(4﹣x)2],∴x1=2,x2=﹣10(舍去),∴BE=2.
综上所述线段BE为8或2,
故答案为8或2.
练习册系列答案
相关题目