题目内容
【题目】化简:(x+1)(x﹣1)﹣x2 .
【答案】解:原式=x2﹣1﹣x2=﹣1【解析】原式第一项利用平方差公式化简,合并即可得到结果.
【题目】在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象.下列说法错误的是( )
A. 乙先出发的时间为0.5小时 B. 甲的速度是80千米/小时
C. 甲出发0.75小时后两车相遇 D. 甲到B地比乙到A地迟5分钟
【题目】认真阅读以下分解因式的过程,再回答所提出的问题:
1+x+x(1+x)+x(1+x)2
=(1+x)[1+x+x(1+x)]
=(1+x)[(1+x)(1+x)]
=(1+x)3
(1)上述分解因式的方法是 ;
(2)分解因式:1+x+x(1+x)+x(1+x)2 +x(1+x)3;
(3)猜想:1+x+x(1+x)+x(1+x)2+…+x(1+x)n 分解因式的结果是 .
【题目】一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.
(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元;
(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等;
(3)求使用回收净化设备后两年的利润总和.
【题目】如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F, AD交CE于H.
(1)求证:∠CAD=∠CBE
(2)求证:FH∥BD.
【题目】若(x+2)(x﹣n)=x2+mx+8,则m+n的值为 ( )
A. 2B. 10C. -10D. -2
【题目】等腰三角形ABC的周长为10,腰AB的取值范围是_____.
【题目】如图,在四边形中, ,垂足为.
(1)求证: .
(2)若,求的长.
【题目】如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD= .