题目内容
【题目】如图1,线段AB及一定点C、P是线段AB上一动点,作直线CP,过点A作AQ⊥CP于点Q,已知AB=7cm,设A、P两点间的距离为xcm,A、Q两点间的距离为y1cm,P、Q两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1、y2随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值.
x/cm | 0 | 0.3 | 0.5 | 0.8 | 1 | 1.5 | 2 | 3 | 4 | 5 | 6 | 7 |
y1/cm | 0 | 0.28 | 0.49 | 0.79 | 1 | 1.48 | 1.87 | 2.37 | 2.61 | 2.72 | 2.76 | 2.78 |
y2/cm | 0 | 0.08 | 0.09 | 0.06 | 0 | 0.29 | 0.73 | 1.82 |
| 4.20 | 5.33 | 6.41 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;
(3)结合函数图象,解决问题:当△APQ中有一个角为30°时,AP的长度约为 cm.
【答案】(1)3.02;(2)见解析;(3)5.49或2.50
【解析】
(1)根据勾股定理即可解决问题;
(2)利用描点法画出函数图象即可;
(3)利用数形结合的思想解决问题即可.
(1)∵过点A作AQ⊥CP于点Q,设A、P两点间的距离为xcm,A、Q两点间的距离为y1cm,P、Q两点间的距离为y2cm.
∴,
∴当x=4,y1=2.61,
∴,
故答案为:3.02;
(2)利用描点法画出函数图象如图所示:
.
(3)当△APQ中有一个角为30°时,x=2y1,,
∴x=5.49或2.50;
故答案为:5.49或2.50.
【题目】2019年中国北京世界园艺博览会已于2019年4月29日在北京市延庆区开展,吸引了大批游客参观游览.五一小长假期间平均每天入园人数大约是8万人,佳佳等5名同学组成的学习小组,随机调查了五一假期中入园参观的部分游客,获得了他们在园内参观所用时间,并对数据进行整理,描述和分析,下面给出了部分信息:
a.参观时间的频数分布表如下:
时间(时) | 频数(人数) | 频率 |
25 | 0.050 | |
85 | ||
160 | 0.320 | |
139 | 0.278 | |
0.100 | ||
41 | 0.082 | |
合计 | 1.000 |
b.参观时间的频数分布直方图如图:
根据以上图表提供的信息,解答下列问题:
(1)这里采用的调查方式是 ;
(2)表中 , , ;
(3)并请补全频数分布直方图;
(4)请你估算五一假期中平均每天参观时间小于4小时的游客约有多少万人?
【题目】设函数y=k1x+,且k1k2≠0,自变量x与函数值y满足以下表格:
x | …… | -4 | -3 | -2 | -1 | - | 1 | 2 | 3 | 4 | …… | |
y | …… | -3 | -2 | -1 | 0 | 1 | -1 | 0 | 1 | m | n | …… |
(1)根据表格直接写出y与x的函数表达式及自变量x的取值范围______
(2)补全上面表格:m=______,n=______;在如图所示的平面直角坐标系中,请根据表格中的数据补全y关于x的函数图象;
(3)结合函数图象,解决下列问题:
①写出函数y的一条性质:______;
②当函数值y≥时,x的取值范围是______;
③当函数值y=-x时,结合图象请估算x的值为______(结果保留一位小数)