题目内容

【题目】如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.

(1)求直线AB的解析式.
(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).
(3)求△ABE面积的最大值.

【答案】
(1)

解:∵抛物线顶点坐标为(1,﹣2),

∴可设抛物线解析式为y=a(x﹣1)2﹣2,

∵OA=3,且点A在x轴的正半轴上,

∴A(3,0),

∴0=a(3﹣1)2﹣2,解得a=

∴抛物线解析式为y= (x﹣1)2﹣2= x2﹣x﹣ ,当x=0时可得y=﹣

∴B(0,﹣ ),

设直线AB解析式为y=kx+b,把A、B坐标代入可得 ,解得

∴y= x﹣


(2)

解:∵点P为线段AB上的一个动点,且PE⊥x轴,

∴点E的横坐标为x,

∵点E在抛物线上,

∴E点的坐标为(x, x2﹣x﹣


(3)

解:∵点P为线段AB上的一点,

∴P(x, x﹣ ),则E(x, x2﹣x﹣ ),

∴PE= x﹣ ﹣( x2﹣x﹣ )=﹣ x2+ x,

由(2)可知点B到PE的距离x,点A以PE的距离为3﹣x,

∴SABE= PEx+ PE(3﹣x)= img src="http://thumb.1010pic.com/questionBank/Upload/2017/07/19/20/4a6d7aa9/SYS201707192035174095939404_DA/SYS201707192035174095939404_DA.001.png" width="9" height="32" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" /> PE(x+3﹣x)= PE= (﹣ x2+ x)=﹣ x2+ x=﹣ (x﹣ 2+

∵﹣ <0,

∴当x= 时,SABE有最大值,最大值为

∴△ABE面积的最大值为


【解析】(1)由条件可先求得抛物线解析式,则可求得B点坐标,再利用待定系数法可求得直线AB解析式;(2)由条件可知P、E的横坐标相同,又点E在抛物线上,则可表示出E点坐标;(3)由(2)可用x表示出PE的长,则可用x表示出△ABE的面积,再利用二次函数的性质可求得其最大值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网