题目内容
【题目】如图,在ABCD中,F是AD的中点,延长BC到点E,使CE= BC,连接DE,CF.
(1)求证:DE=CF;
(2)若AB=4,AD=6,∠B=60°,求DE的长.
【答案】
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC.
又∵F是AD的中点,∴FD= AD.
∵CE= BC,
∴FD=CE.
又∵FD∥CE,
∴四边形CEDF是平行四边形.
∴DE=CF
(2)解:过D作DG⊥CE于点G.如图所示:
∵四边形ABCD是平行四边形,
∴AB∥CD,CD=AB=4,BC=AD=6.
∴∠DCE=∠B=60°.
在Rt△CDG中,∠DGC=90°,
∴∠CDG=30°,
∴CG= CD=2.
由勾股定理,得DG= =2 .
∵CE= BC=3,
∴GE=1.
在Rt△DEG中,∠DGE=90°,
∴DE= = .
【解析】(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),得出四边形CEDF是平行四边形,即可得出结论;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.
【考点精析】利用平行四边形的性质对题目进行判断即可得到答案,需要熟知平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.
练习册系列答案
相关题目