题目内容
【题目】如图,直线y=x﹣4与x轴、y轴分别交于A、B两点,抛物线y=x2+bx+c经过A、B两点,与x轴的另一个交点为C,连接BC.
(1)求抛物线的解析式及点C的坐标;
(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标;
(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由.
【答案】(1)y=x2﹣x﹣4,C(﹣3,0);(2)满足条件的点M的坐标为(,﹣)或(5,);(3)存在满足条件的点D,点D坐标为(﹣,﹣)或(1,﹣2)或(﹣,).
【解析】
第一问求解析式主要利用待定系数求解,利用一次函数y=x﹣4,求解出A点坐标和B点坐标,然后代入方程即可,
第二问求解M点的坐标,需要讨论,因为∠MBA+∠CBO=45°是动态的,故当BM⊥BC时是一种情况,利用tan∠M1BE=tan∠BCO=,可以给出等式关系,求出M点,BM与BC关于y轴对称时是第二种情况,tan∠M2BE=tan∠CBO=,可以出给等式关系,求出M点
第三问,需要讨论,因为四个点,知晓其中三个点,可以这样讨论,当CP为菱形的边,CQ为对角线这是第一种情况,利用解直角三角形求出Q点的纵坐标,就知道D点的纵坐标,然后利用cos∠BCO=,建立等式即可求出菱形的边长,利用菱形边长和Q点横坐标,即可得到Q点横坐标,当CQ和CP均为菱形的边这是第二种情况,因为CP=CQ=BQ,所以Q点在BC的中,即菱形的边长出来了,利用解直角三角形即可给出Q点的纵坐标,知道菱形的边长,所以D点的横纵坐标都出来了,当CQ为菱形的边,CP为菱形的对角线这是第三种情况,利用解直角三角形,可以给出Q点坐标,我们可以知道D点和Q点关于x轴对称,有菱形的基本性质可以知道,所以D点坐标出来了
(1)直线解析式y=x﹣4,
令x=0,得y=﹣4;
令y=0,得x=4.
∴A(4,0)、B(0,﹣4).
∵点A、B在抛物线y=x2+bx+c上,
∴
,
解得 ,
∴抛物线解析式为:y=x2﹣x﹣4.
令y=x2﹣x﹣4=0,
解得:x=﹣3或x=4,
∴C(﹣3,0).
(2)∠MBA+∠CBO=45°,
设M(x,y),
①当BM⊥BC时,如答图2﹣1所示.
∵∠ABO=45°,
∴∠MBA+∠CBO=45°,故点M满足条件.
过点M1作M1E⊥y轴于点E,则M1E=x,OE=﹣y,
∴BE=4+y.
∵tan∠M1BE=tan∠BCO=,
∴,
∴直线BM1的解析式为:y=x﹣4.
联立y=x﹣4与y=x2﹣x﹣4,
得:x﹣4=x2﹣x﹣4,
解得:x1=0,x2= ,
∴y1=﹣4,y2=﹣ ,
∴M1(,﹣);
②当BM与BC关于y轴对称时,如答图2﹣2所示.
∵∠ABO=∠MBA+∠MBO=45°,∠MBO=∠CBO,
∴∠MBA+∠CBO=45°,
故点M满足条件.
过点M2作M2E⊥y轴于点E,
则M2E=x,OE=y,
∴BE=4+y.
∵tan∠M2BE=tan∠CBO=,
∴ ,
∴直线BM2的解析式为:y=x﹣4.
联立y=x﹣4与y=x2﹣x﹣4得:x﹣4=x2﹣x﹣4,
解得:x1=0,x2=5,
∴y1=﹣4,y2=,
∴M2(5,).
综上所述,满足条件的点M的坐标为:(,﹣ )或(5,).
(3)设∠BCO=θ,则tanθ= ,sinθ=,cosθ=.
假设存在满足条件的点D,设菱形的对角线交于点E,设运动时间为t.
①若以CQ为菱形对角线,如答图3﹣1.此时BQ=t,菱形边长=t.
∴CE=CQ=(5﹣t).
在Rt△PCE中,cosθ= = = ,
解得t= .
∴CQ=5﹣t=.
过点Q作QF⊥x轴于点F,
则QF=CQsinθ=,CF=CQcosθ=,
∴OF=3﹣CF=.
∴Q(﹣,﹣).
∵点D1与点Q横坐标相差t个单位,
∴D1(﹣,﹣);
②若以PQ为菱形对角线,如答图3﹣2.此时BQ=t,菱形边长=t.
∵BQ=CQ=t,
∴t= ,点Q为BC中点,
∴Q(﹣ ,﹣2).
∵点D2与点Q横坐标相差t个单位,
∴D2(1,﹣2);
③若以CP为菱形对角线,如答图3﹣3.此时BQ=t,菱形边长=5﹣t.
在Rt△CEQ中,cosθ= = =,
解得t=.
∴OE=3﹣CE=3﹣t= ,D3E=QE=CQsinθ=(5﹣ )× =.
∴D3(﹣,).
综上所述,存在满足条件的点D,点D坐标为:(﹣,﹣)或(1,﹣2)或(﹣,).