题目内容
【题目】(本小题满分10分)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BF=BC.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交于点H,连接BD、FH.
(1)求证:△ABC≌△EBF;
(2)试判断BD与⊙O的位置关系,并说明理由;
(3)若AB=1,求HGHB的值.
【答案】(1)证明见试题解析;(2)相切,理由见试题解析;(3).
【解析】
试题(1)由∠ABC=90°和FD⊥AC,得到∠ABF=∠EBF,由∠DEC=∠BEF,得到∠DCE=∠EFB,从而得到△ABC≌△EBF(ASA);
(2)BD与⊙O相切.连接OB,只需证明∠DBE+∠OBE=90°,即可得到OB⊥BD,从而有BD与⊙O相切;
(3)连接EA,EH,由DF为线段AC的垂直平分线,得到AE=CE,由△ABC≌△EBF,得到AB=BE=1,进而得到CE=AE=,故,即可得出结论,
又因为BH为角平分线,易证△EHF为等腰直角三角形,故,得到,再由△GHF∽△FHB,得到.
试题解析:(1)∵∠ABC=90°,∴∠CBF=90°,∵FD⊥AC,∴∠CDE=90°,∴∠ABF=∠EBF,∵∠DEC=∠BEF,∴∠DCE=∠EFB,∵BC=BF,∴△ABC≌△EBF(ASA);
(2)BD与⊙O相切.理由:连接OB,∵DF是AC的垂直平分线,∴AD=DC,∴BD=CD,∴∠DCE=∠DBE,∵OB=OF,∴∠OBF=∠OFB,∵∠DCE=∠EFB,∴∠DBE=∠OBF,∵∠OBF+∠OBE=90°,∴∠DBE+∠OBE=90°,∴OB⊥BD,∴BD与⊙O相切;
(3)连接EA,EH,∵DF为线段AC的垂直平分线,∴AE=CE,∵△ABC≌△EBF,∴AB=BE=1,∴CE=AE=,∴,∴,又∵BH为角平分线,∴∠EBH=∠EFH=45°,∴∠HEF=∠HBF=45°,∠HFG=∠EBG=45°,∴△EHF为等腰直角三角形,∴,∴,∵∠HFG=∠FBG=45°,∠GHF=∠GHF,∴△GHF∽△FHB,∴,∴,∴.