题目内容
【题目】如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A,B的对应点C,D.连接AC,BD.
(1)写出点C,D的坐标及四边形ABDC的面积.
(2)在y轴上是否存在一点P,连接PA,PB,使S三角形PAB=S四边形ABDC?若存在,求出点P的坐标,若不存在,试说明理由;
(3)点Q是线段BD上的动点,连接QC,QO,当点Q在BD上移动时(不与B,D重合),给出下列结论:①的值不变;②的值不变,其中有且只有一个正确,请你找出这个结论并求值.
【答案】(1)C(0,2),D(4,2),S四边形ABCD=8;(2)存在,点P的坐标为(0,4)或(0,-4);(3)结论①正确,=1.
【解析】
(1)根据点平移的规律:左减右加,上加下减,即可得到点C、D的坐标,利用平行四边形的面积公式计算面积即可;
(2)设点P的坐标为(0,y),根据三角形的面积公式底乘以高的一半列式计算即可得到答案;
(3)结论①正确.过点Q作QE∥AB,交CO于点E,利用平行线的性质:两直线平行内错角相等证得∠DCQ+∠BOQ=∠CQO,由此得到结论①正确
(1)∵将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,
∴C(0,2),D(4,2),AB∥CD且AB=CD=4,
∴四边形ABDC是平行四边形,
∴S四边形ABCD=4×2=8.
(2)存在,
设点P的坐标为(0,y),根据题意,得×4×|y|=8.
解得y=4或y=-4.
∴点P的坐标为(0,4)或(0,-4).
(3)结论①正确.
过点Q作QE∥AB,交CO于点E.
∵AB∥CD,
∴QE∥CD.
∴∠DCQ=∠EQC,∠BOQ=∠EQO.
∵∠EQC+∠EQO=∠CQO,
∴∠DCQ+∠BOQ=∠CQO.
∴=1.