题目内容
【题目】已知点分别在菱形的边上滑动(点不与重合),且.
(1)如图1,若,求证:;
(2)如图2,若与不垂直,(1)中的结论还成立吗?若成立,请证明,若不成立,说明理由;
(3)如图3,若,请直接写出四边形的面积.
【答案】(1)证明见解析;(2)(1)中的结论还成立,证明见解析;(3)四边形的面积为.
【解析】
(1)根据菱形的性质及已知,得到,再证,
根据三角形全等的性质即可得到结论;
(2)作,垂足分别为点,证明,根据三角形全等的性质即可得到结论;
(3)根据菱形的面积公式,结合(2)的结论解答.
解:(1)∵四边形是菱形,
∴,.
∵,∴,
∴.
∵,∴,∴.
在和中,,
∴,
∴.
(2)若与不垂直,(1)中的结论还成立证明如下:
如图,作,垂足分别为点.
由(1)可得,
∴,
在和中,,
∴,∴.
(3)如图,连接交于点.
∵,∴为等边三角形,
∵,∴,同理,,
∴四边形的面积四边形的面积,
由(2)得四边形的面积四边形AECF的面积
∵,
∴,,
∴四边形的面积为,
∴四边形的面积为.
【题目】在学校组织的“学习强国”阅读知识竞赛中,每班参加比赛的人数相同,成绩分为四个等级,其中相应等级的得分依次记为分,分,分和分.年级组长张老师将班和班的成绩进行整理并绘制成如下的统计图:
(1)在本次竞赛中,班级及以上的人数有多少?
(2)请你将下面的表格补充完整:
平均数(分) | 中位数(分) | 众数(分) | 级及以上人数 | |
班 | ||||
班 | > |
【题目】(8分)某中学数学活动小组为了调查居民的用水情况,从某社区的户家庭中随机抽取了户家庭的月用水量,结果如下表所示:
月用水量(吨) | |||||||
户数 |
(1)求这户家庭月用水量的平均数、众数和中位数;
(2)根据上述数据,试估计该社区的月用水量;
(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为(吨),家庭月用水量不超过(吨)的部分按原价收费,超过(吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合理?简述理由.