题目内容
【题目】我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.
(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC= ,OC△OA= ;
(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;
(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.
【答案】(1)0,7;(2)﹣8,24;(3).
【解析】试题分析:(1)①先根据勾股定理求出BC=10,再利用直角三角形的性质得出OA=OB=OC=5,最后利用新定义即可得出结论;
②再用等腰三角形的性质求出CD=3,再利用勾股定理求出OD,最后用新定义即可得出结论;
(2)①先利用含30°的直角三角形的性质求出AO=2,OB=,再用新定义即可得出结论;
②先构造直角三角形求出BE,AE,再用勾股定理求出BD,最后用新定义即可得出结论;
(3)先构造直角三角形,表述出OA,BD2,最后用新定义建立方程组求解即可得出结论.
试题解析:(1)①∵∠BAC=90°,AB=8,AC=6,∴BC=10,
∵点O是BC的中点,∴OA=OB=OC=BC=5,∴AB△AC=AO2﹣BO2=25﹣25=0,
②如图1,取AC的中点D,连接OD,∴CD=AC=3,
∵OA=OC=5,∴OD⊥AC,
在Rt△COD中,OD==4,∴OC△OA=OD2﹣CD2=16﹣9=7,
故答案为:0,7;
(2)①如图2,取BC的中点D,连接AO,∵AB=AC,∴AO⊥BC,
在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=30°,
在Rt△AOB中,AB=4,∠ABC=30°,∴AO=2,OB=,
∴AB△AC=AO2﹣BO2=4﹣12=﹣8,
②取AC的中点D,连接BD,∴AD=CD=AC=2,过点B作BE⊥AC交CA的延长线于E,在Rt△ABE中,∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,
∵AB=4,∴AE=2,BE=,∴DE=AD+AE=4,
在Rt△BED中,根据勾股定理得,BD= ==,
∴BA△BC=BD2﹣CD2=24;
(3)如图3,设ON=x,OB=OC=y,∴BC=2y,OA=3x,
∵AB△AC=14,∴OA2﹣OB2=14,∴9x2﹣y2=14①,
取AN的中点D,连接BD,∴AD=DB=AN=×OA=ON=x,∴OD=ON+DN=2x,
在Rt△BOD中,BD2=OB2+OD2=y2+4x2,∵BN△BA=10,
∴BD2﹣DN2=10,∴y2+4x2﹣x2=10,∴3x2+y2=10②
联立①②得: 或(舍),∴BC=4,OA=,∴S△ABC=BC×AO=.
【题目】在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
销售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售价x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?