题目内容
【题目】如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4 ,则S阴影=( )
A.2π
B. π
C. π
D. π
【答案】B
【解析】解:如图,假设线段CD、AB交于点E, ∵AB是⊙O的直径,弦CD⊥AB,
∴CE=ED=2 ,
又∵∠BCD=30°,
∴∠DOE=2∠BCD=60°,∠ODE=30°,
∴OE=DEcot60°=2 × =2,OD=2OE=4,
∴S阴影=S扇形ODB﹣S△DOE+S△BEC= ﹣ OE×DE+ BECE= ﹣2 +2 = .
故选B.
根据垂径定理求得CE=ED=2 ,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB﹣S△DOE+S△BEC .
【题目】列方程解应用题
(1)一个学生有中国邮票和外国邮票共25张,中国邮票的张数比外国邮票的张数的2倍少2张,这个学生有中国邮票和外国邮票各多少张?
(2)甲乙二人相距18千米,二人同时出发相向而行,1小时相遇;同时出发同向而行,甲3小时可以追上乙。求二人的平均速度各是多少?
(3)国家为九年义务教育期间的学生实行“两免一补”政策,下表是某地区某中学国家免费提供教科书补助的部分情况。
七 | 八 | 九 | 合计 | |
每人免费补助金额(元) | 110 | 90 | 50 | —— |
人数(人) | 80 | 300 | ||
免费补助金额(元) | 4000 | 26200 |
请问该校七、八年级各有学生多少人?
【题目】某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).
甲、乙两人射箭成绩统计表
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | |
甲成绩 | 9 | 4 | 7 | 4 | 6 |
乙成绩 | 7 | 5 | 7 | a | 7 |
(1)a= , =;
(2)请完成图中表示乙成绩变化情况的折线;
(3)①观察图,可看出的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.
②请你从平均数和方差的角度分析,谁将被选中.